(新春走基层)电力“新兵”的元宵节:从“社会小白”到“电力守护者”******
中新网晋中2月3日电 题:电力“新兵”的元宵节:从“社会小白”到“电力守护者”
作者 高雨晴 张博然 冀一鸣
“小元,元宵节快到了,这时候千万不能松懈,咱们再进行一次特巡工作。”“好的,师父,马上就来。”临近元宵节,值长王时光带着刚入职的新员工元淑媛走进设备区,开展特巡工作。
从刚参加工作的大学生,到一名电力守护者,面对新环境、新群体、新挑战,元淑媛即将在国网山西超高压变电公司1000千伏特高压洪善站度过一个不一样的元宵节。自大年三十起,他们就一直坚守在工作岗位,至今已连续工作半个月。
1000千伏特高压洪善变电站位于山西省晋中市平遥县洪善镇北长寿村,于2017年8月14日正式投入运行。该站作为1000千伏榆横-晋中-潍坊特高压交流输变电工程的中间变电站,是华北特高压交直流主网架的重要组成部分,构成了“晋电外送”的重要通道之一。
往年元宵节,元淑媛都是和父母、朋友一起度过,“入职后第一年的元宵节就在站里度过,心里感到很期待”。
“工作十几年,在站里过节对我们来说已经习以为常了。”王时光指着眼前的设备说:“小元,你看看眼前的这些设备,想象我们同医生一样,在保电的关键阶段,对站内设备进行最后一次全面体检,好比家里的大扫除,做好保供专项巡查工作,是为了千家万户能够过上一个明亮温暖的幸福年。”
站长王亚文一如往常坚守岗位,在特巡班前会上,他介绍,目前正处于迎峰度冬和两节保电关键期,面对近期出现的雨雪天气,“我们已提前做好突发事件应急处置预案,开展相应的防寒、防冻、防风应急演练,保障电力主网在极寒天气下的安全稳定运行。”
于是,元淑媛和师父王时光拿着铁锹、铲雪车和扫帚走进站区,对前不久的大雪现场设备覆雪覆冰情况、GIS母线伸缩节以及室外箱柜加热驱潮等装置进行检查,并对500千伏一期、二期断路器水平布置盆式绝缘子法兰对接面的积雪进行清理。
手指头、脚趾头快被冻僵,呼出的热气形成小水珠挂在睫毛上,元淑媛心里感到十分困惑:“师父,等太阳出来雪慢慢化了就好了,为什么还要扫雪呢?”
“雪化了有可能顺着螺纹的缝隙破坏法兰的密封,造成漏气,严重了有可能对设备造成更大的伤害,还得停电处理,所以,能让大家在特殊时期放心用电,得靠我们每一个变电人认真负责去实现。”王时光语重心长地说。
为了保障节日期间可靠供电,洪善站启动防寒防冻特巡预案,加强站内设备的特殊巡视和红外测温的力度。同时组织运维人员对站内1000千伏主变、高抗进行“拉网式”隐患排查,对断路器加热器、保护小室、蓄电池室、消防泵房加热装置进行检查,密切关注气象变化,做好各项应急准备工作。
元宵佳节,元淑媛和站内值守的工作人员依旧会坚守岗位,紧盯监控大屏的报文信息,依次检查每台主变、高抗的油色谱在线的数据是否正确,照旧干着重复性的工作。
“作为一名青年员工,能在自己的岗位上发光发热,为守护万家灯火贡献属于自己的力量,让我倍感自豪。”元淑媛说。(完)
科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
(文图:赵筱尘 巫邓炎)